Botanical Gazette

 APRIL, 1803.
Contributions from the Cryptogamic Laboratory of Har-

 vard University. XIX.
Note on Phallogaster saccatus.

ROLAND THAXTER.

WITH PLATE IX.

During the past season the writer was so fortunate as to meet with the singular genus of Phalloidea recently described by Mr. Morgan under the above name, as well as to observe its final development in connection with its earlier conditions; and since the description above referred to seems to indicate that the material on which it was based was somewhat immature, the publication of the present note seems desirable to supplement the original account. Through the courtesy of Mr. Morgan the writer has been able to compare an authentic specimen of Phallogaster with his own material and to determine their identity, although, as will be observed, the account here given involves some modification of the original description.

The genus presents so remarkable a departure from the type of structure common both to the Phallece and the Clathrea, through the absence of any volva or receptacle differentiated as such in the mature condition, that it may not dive properly placed by itself as the type of a third subdivision of Phallogastrea, but involves a distinct modification of the generally accepted definition of the family as a Whole, in which its affinities are evidently rather with the Clathrea than with other members of the group. Its structUre is remarkably simple members of the group. Its structeccentricity, and simple in a family peculiar for structural nect the phalloids as stated by Mr. Morgan, appears to conany form hithers more closely with the Lycoperdacee than The sportherto discovered.
allies, from porophore in the present genus arises, like that of its below. the surf branching rope-like mycelium, running on or 9 Vol. XVIII of the ground or decaying wood on which Vol. XVIII.-No. 4 .
it grows, and, though sometimes sessile, is usually raised upon a more or less clearly defined stalk, which, not infre quently, is abruptly distinguished from it (fig. I). In section it is seen to consist (fig. 5) of a central portion, x, highly gelatinous even in young specimens and extending dowtwards, x^{\prime}, into the stalk, while above it forms a more or les well defined central axis, $x^{\prime \prime}$, surrounded laterally and superiorly by the gleba which it penetrates in all directions, not only separating and entering its main lobes, but extending to the peridial wall within which it forms a continuous layer, x separating these two structures, except at definite points, y_{1} where they are closely united. This gelatinous portion is composed of rather slender hyphae, branching and intertwir ing irregularly, among which numerous vesicular clamp-con nections are conspicuous, one or both of the adjacent cell ends at such points being abruptly and very considerably inflatel

The gleba, the color and minute structure of which is similar to that of other phalloids, is irregularly lobed, and, 28 just mentioned, is separated from the peridial wall by 1 gelatinous layer continuous with the other gelatinous efo ments. This layer is, however, interrupted at irregular is tervals by certain slightly projecting areas of the inner fate of the peridial wall. These prominences, which are often il defined and are irregular in size and outline, show no signs d any differentiation which might suggest the first step towath the formation of a receptacle proper, although the glebat continuous with them and adheres to them after its deliquef cence in clearly defined aggregates (fig. 4).

The peridial wall is moderately thick and clearly tinguished from the elements contained within it. In sectio it is seen to be formed by a thick layer of branching septiti hyphae, the successive cells of which are irregularly inflateforming eventually a rather loose pseudo-parenchyma which covered externally by a very thin cortical layer, composed slender cylindrical brownish hyphae and ill defined or scarch distinguishable at maturity, although in the youngest speo men observed, measuring 7^{mm} in diameter, it is more pros nent, as would naturally follow from its origin as a contim ation of the mycelial cortex. The inner face of the perim wall is beset with prominences irregular in outline and ob tent and at intervals wholly absent. Seen in section cert of these prominences coalesce with the gleba lobes. others are bounded by the gelatinous layer already referip
to as separating the gleba from the peridium. The peridial wall, moreover, does not form a homogeneous and unbroken layer, but is singularly modified by the presence of numerous depressed areas (figs. 2, 3, 6, z), irregular in size, shape and position, giving the surface in many specimens an irregularly reticulated appearance, which, though less distinct in fresh material, becomes well defined when the wall is slightly shrunken by drying or by treatment with alcohol. These depressions, which constitute one of the most striking peculiarities of the form in question, are filled with loosely woven more or less shriveled brownish hyphae, and do not appear to represent a special differentiation of the wall, but to have resulted from the death or non-development of its hyphae at such points during the earlier period of its growth. The function of these depressions becomes manifest when the fungus has reached maturity. At this time dehiscence takes place in two ways. In smaller specimens the peridium may become irregularly clathrate through the perforation of its wall where these areas occur, the openings being enlarged through the outward curvature of the surrounding edges (fig. 5). More frequently, however, this perforation is associated with a general dehiscence at the apex (fig. 4), first
indicated by the (figs. 2, 3), the course of which is guided to some extent by the depressed areas just described. The peridial wall thus ruptures in an irregularly stellate fashion, into several segments, which, separating from one another and becoming divergent or slightly reflexed, expose the interior surface. At the same time the larger of the depressed areas which (fg. 4, a). Meanwhile the entire contents of the perforate
has become deliquescent, the main lobes of the gleba con-
tracting and adhering to the inn form of clearly dering to the inner face of the peridium in the shape (fig. $4, b$) fined slimy masses, of irregular size and shaped peridium is hn this condition the expanded funnelthe function usually hollow to its very base and has assumed lighly specialized recomplished in the group by means of a tpore masses, the receptacle, exposing to the air the fetid complished through the reval of which is, as usual, rapidly acwhich soon collapses the agency of flies, leaving an empty shell It should perlapses and decays.
and resultant perhaps be mentioned that the depressed areas
as can be determined from the material at hand, do notilit a parallel elsewhere in the family, appear to bear no defint relation to the areas on the inner face of the peridial wid upon which the gleba lobes are seated, including them or of without regularity.

The question of homologies between this and other phis loid genera may well be deferred till its earliest condifie are exactly known; meanwhile it would be perhaps more es than profitable to point out by what modifications we mist readily convert it into something very like the genus Clatini

In view of the above history the original diagnosis of th form may be modified as follows:

PHALLOGASTER Morgan.-Mycelium fibrous, brand ing. Peridium spherical to pyriform, stipitate or substipitz consisting of a single layer covered by an evanescent corfie and coarsely reticulated through the presence of numerois regular thin areas which become perforate at maturity, perforation commonly associated with a general terminal hiscence of the peridium into several divergent lobes. irregularly lobed, the lobes continuous with slight promine from the surface of the peridium from which they are where separated by a gelatinous layer continuous with central gelatinous axis which penetrates the gleba and sef ates its lobes. The entire contents deliquescent at maturit adhering in distinct masses to the inner surface of the th tured peridium.

Phallogaster saccatus Morgan: Journ. Cincire Soc. Nat. Hist. Xv, 171 , plate II, Oct. 1892.-Plate Solitary or rarely subcespitose. Peridium spherical to form, $20-50 \times 10-25^{\mathrm{mm}}$, stipitate or nearly sessile, the su smooth, slightly uneven, whitish stained with dull fleshat maturity, becoming coarsely clathrate from the formatil irregular perforations, the perforation usually associated a terminal dehiscence of the peridium into from three th divergent lobes: the dark sage-green gleba adhering in do masses of irregular size and shape to the inner face 0 peridial wall. Spores greenish, sub-cylindrical $4-5.5 \times 1$. 6-8 on each basidium.

Ohio (Morgan and Herrick). New York and Conne (Underwood). Maine (Thaxter) on the ground or wood under Fagus.

Harvard University.

Explanation of Plate IX. - Phallogaster saccatus Morgan. Fig. I. Stipitate habit. Fig. 2, 3. Appearance just before dehiscence showing cracks at apes and thin areas z. Fig. 4. The same specimen as fig. 3, after dehisotece. a, perforate thin areas. b, deliquesced gleba masses adhering to inner face of peridial wall. Fig. 5. Smaller example which has become perforate without complete dehiscence. Fig 6. Longitudinal section of a mature specimen before dehiscence, $x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$, gelatinous axis and its derivatives, y points of origin of gleba from peridial wall. z, thin areas in peridial wall. Fig. 7. Basidia with spores in situ. Fig. 8, spores.

Figs, 1-6 about natural size. Fig. 7 drawn with Leitz 1-12 oil immertion, Zeiss ocular 4. Fig. 8 Leitz I-12 oil im. Zeiss comp. oc. 12 .

The genus Cæsalpinia.

E. M. FISHER.

Following the publication of my revision of the genus Hoffmanseggia in Contributions National Herbarium, I. no. 5, I desire to make certain corrections and supplementary statements.
On page 144, \&r, line I of synopsis, the reference shouid We to no. 2 (H. drepanocarpa Gray) not no. 4 (H. gracilis Watson).
Since nomina nuda are not to be recognized, H. glabra, var. intricata Fisher should read H. intricata Brandg.; and H. ${ }_{g}$ glabra Fisher should read H. intricata, var. glabra Fisher.
It may be well to speak of the combination H. falcaria, var. domissa Fisher. Dr. Gray, in 1852 , published in Pl. Wright., in the following order, H. densiflora Benth. MSS., H. stricta, var. demissa Gray, and H. stricta Benth. MSS. H. densiflora Benth. is described incompletely, the fruit being wanting, and $D_{\text {r. Gray remarks that he is not sure that it is distinct from the }}$ next form, H. stricta, var. demissa Gray. From an examination of the types, I concluded that H. densiflora is intermediate between H. stricta Benth. and H. stricta, var. demissa doubted whether they should be separate, and his unwillingness to publish the var. demissa as a species (although having mature fruit) shows which he considered to be the type. Undemand that H. falcaria, var. demissa (Gray) Fisher be At the time of writing, var. densiflora (Benth.) Fisher. it was not merge writing the revision, it was with hesitation that tion of the merged with Casalpinia. After a careful examinaparts and their tissues, in several species

